Improving *Tug-of-War* sketch using Control-Variates method

Bhisham Dev Verma

jointly with Rameshwar Pratap (IIT Mandi) and Raghav Kulkarni (CMI) IIT Mandi

Streaming Datasets

Many data sources that generates large volume of data are best modeled as data stream

e.g. : streams of network packets, click stream data, traffic data etc.

- Impractical to store and process the entire data
- By taking one pass over data, quickly build a small summary (a.k.a. sketch)
- Perform computation on sketch to get approximate answer

k-*th* moment and Inner product

□Universe = { a, b, c,, z} (size of universe is *n*) □ σ_1 = a, b, a, d, c, b, b, d, e, ... and $f = (f_1, f_2, ..., f_n)$ is corresponding frequency vector.

 $\Box \sigma_2 = a, b, a, d, c, e, c, d, e, b \dots$ and $g = (g_1, g_2, \dots, g_n)$ is corresponding frequency vector.

 \Box **k**-th moment of σ_1 and σ_2 is

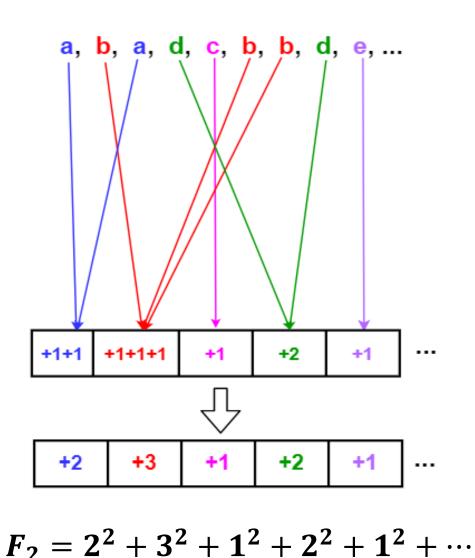
$$F_{k} = \sum_{i \in [n]} f_{i}^{k}$$
 and $G_{k} = \sum_{i \in n} g_{i}^{k}$ (1)

 \Box Inner product of f and g is

$$\langle \boldsymbol{f}, \boldsymbol{g} \rangle = \sum_{i \in [n]} f_i \cdot g_i$$
 (2)

Our focus is to find
 *F*₂ moment of the stream
 Inner product

Naive Method to Compute F_2 moment



 \Box Data stream of alphabets of length m.

Universe: = $[n] = \{a, b, ..., z\}$

 $\Box f_i$ is frequency of i^{th} item, $i \in [n]$.

 \Box **f** = ($f_1, f_2, ..., f_n$) is a frequency vector.

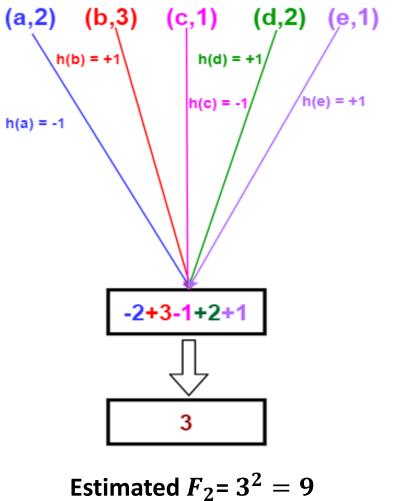
\Box Space requirement : $O(n \ log m)$.

Impractical when n and m are very large.

F_2 estimation of a data-stream using *Tug-of-War* sketch



Space required : $O(\log m + \log n)$



Actual $F_2 = 2^2 + 3^2 + 1^2 + 2^2 + 1^2 = 19$

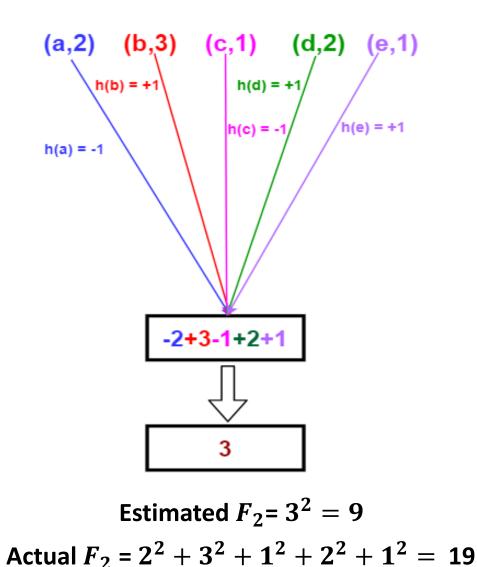
F₂ estimation of a data-stream using Tug-of-War sketch

- $\square \quad h[n] \to \{+1, -1\}$
- \Box f_i frequency of i^{th} item
- $\Box \text{ Frequency Vector: } \boldsymbol{f} = (f_1, f_2, \dots, f_n)$

Estimating *F*₂:

$$\widetilde{X} = \sum_{i \in [n]} f_i h(i)$$
$$X = \widetilde{X}^2$$

X is the estimate of F_2



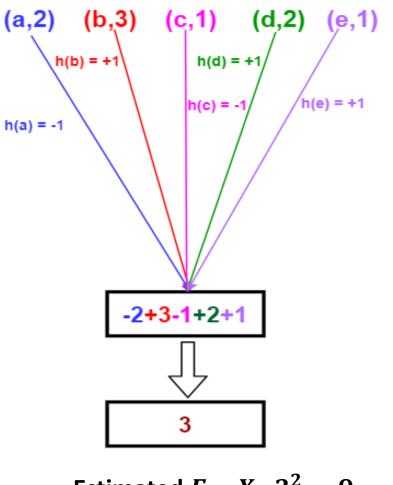
F₂ estimation of a data-stream using Tug-of-War sketch

(3)

(4)

 $\widetilde{X} = \sum_{i \in [n]} f_i h(i)$ $X = \widetilde{X}^2$ $\Box \text{ Statistics of } X$ $E[X] = ||f||_2^2 = F_2$ and $Var[X] = 2(F_2^2 - F_4)$

Variance is high for large values of f_i



Estimated F_2 : $X=3^2=9$ Actual $F_2=2^2+3^2+1^2+2^2+1^2=19$

Variance reduction via Control-Variate (CV)

□ Let X be the r.v. of our estimate □ Find another r.v. Z s.t. E[Z] is known □ Our new estimator: X + c(Z - E[Z])

$$E[X + c(Z - E[Z])] = E[X].$$
 (5)

 $Var[X - c(Z - E[Z])] = Var[X] + c^{2}Var[Z] + 2 Cov[X, Z].$ (6)

Optimal value of c which minimize equ. (6), say ĉ is

$$\hat{c} = -\frac{Cov[X,Z]}{Var[Z]}.$$
(7)

(8)

Equation (6) and (7), gives

$$Var[X + c(Z - E[Z])] = Var[X] - \frac{Cov[X,Z]^2}{Var[Z]}.$$

Variance reduction via Control-Variate (CV)

Properties of *Z*:

□ should be easily computable

□ should have low variance

□ should have high covariance with *X*

 $\Box E[Z]$ should be known

Improving Tug-of-War using Control-Variate (CV) Method

Tug-of –war estimate:
$$X = \left(\sum_{i \in [n]} f_i h(i)\right)^2$$

We choose CV r.v. $Z = \sum_{i \neq j, i, j \in [n]} h(i)h(j)$ $\Rightarrow E[Z] = 0 \text{ and } Var[Z] = F_0(F_0 - 1),$

 $Cov[X, Z] = F_1^2 - F_2$

where $\mathbf{F}_0 := n$ and $\mathbf{F}_1 := \sum_{i \in [n]} f_i$.

$$\hat{c} = -\frac{Cov[X,Z]}{Var[Z]} = -\frac{F_1^2 - F_2}{F_0(F_0 - 1)}$$
(9)

Variance Reduction =
$$\frac{Cov[X,Z]^2}{Var[Z]} = \frac{(F_1^2 - F_2)^2}{F_0(F_0 - 1)}$$

(10)

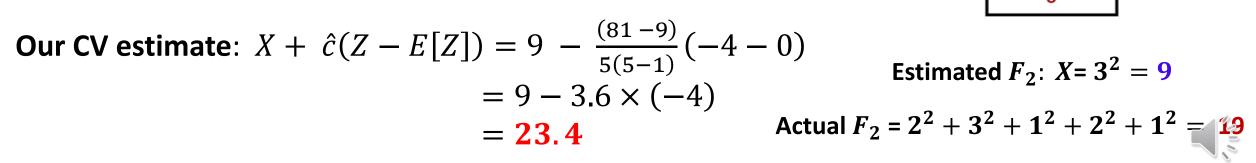
Improving Tug-of-War using Control-Variate (CV) Method

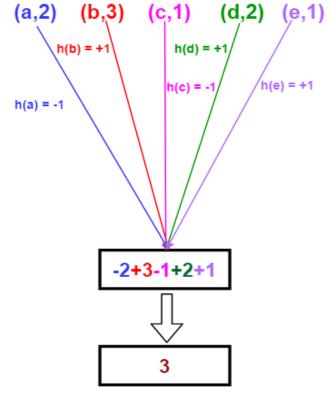
$$\Box X = 9$$
 (Tug-of-war estimate), $Z = -4$, and $E[Z] = 0$.

$$\Box \operatorname{Recall} \hat{c} = -\frac{F_1^2 - F_2}{F_0(F_0 - 1)}.$$

We compute F₁ by maintaining a counter (in space $O(\log m)$).

 \Box For F_2 , we use Tug-of-War estimate as a proxy.





Datasets

Synthetic Datasets

- stream of 100000 items
- frequency of each item is sampled randomly between 1 and 5000.

KOS dataset

- consist of corpus of document, treat word as an item and number of occurrences in entire corpus as frequency
- consist of 6906 distinct word and their frequency

Transaction datasets

- T10I4D100K: consist of 870 distinct items and 1010228 item in total
- T40I10D100K: consist of 942 distinct items and 3960507 items in total

Evaluation Metrics:

Variance analysis via box-plot

- Mean absolute error
- Median of means estimation

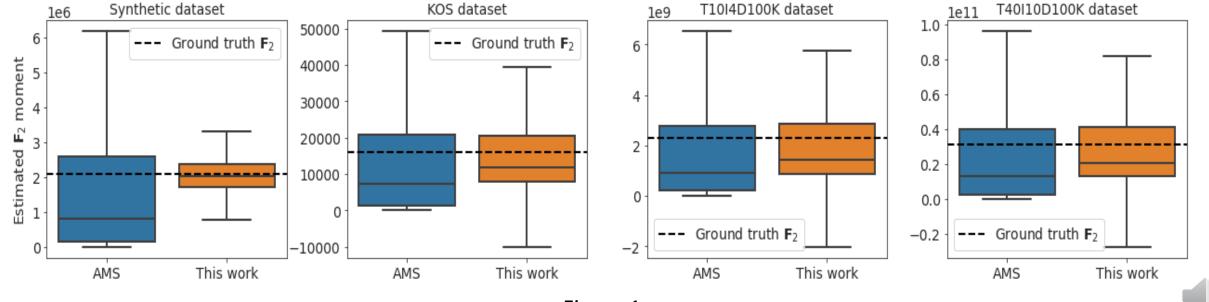
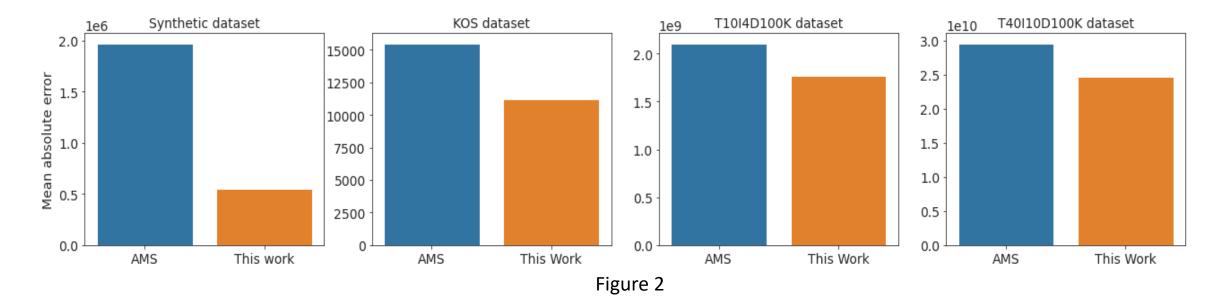
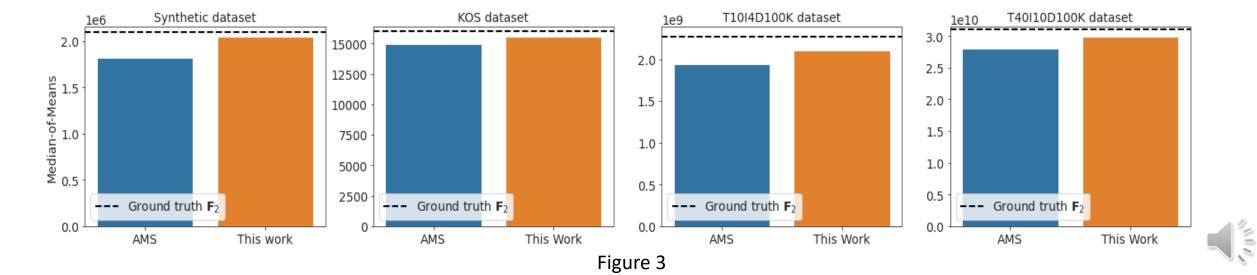


Figure 1





Improving Inner product estimate using CV method

 $\Box f = (f_1, f_2, ..., f_n) \text{ is a frequency vector of stream } \sigma_1.$ $\Box g = (g_1, g_2, ..., g_n) \text{ is a frequency vector of stream } \sigma_2.$ $\Box \text{ Tug-of-War sketch of streams } \sigma_1 \text{ and } \sigma_2 \text{ are}$ $\tilde{f} = \sum_{i \in [n]} f_i h(i) \text{ and } \tilde{g} = \sum_{i \in [n]} g_i h(i)$ $\Box \text{ Inner product estimate of } f \text{ and } g \text{ is}$

 $X^{(2)} = \tilde{f}.\tilde{g}$

$$\Box E[X^{(2)}] = \langle \boldsymbol{f}, \boldsymbol{g} \rangle$$

$$\Box Var[X^{(2)}] = \sum_{i \neq j, i, j \in [n]} f_i^2 g_i^2 + \sum_{i \neq j, i, j \in [n]} f_i g_i f_j g_j$$
(11)
(12)

Variance is high for large value f_i and g_i

Improving Inner product estimate using CV method

Tug-of-war estimate: $X^{(2)} = \tilde{f} \cdot \tilde{g} = \left(\sum_{i \in [n]} f_i h(i)\right) \left(\sum_{i \in [n]} g_i h(i)\right)$

We choose CV r.v. $Z^{(2)} = \tilde{f}^2 + \tilde{g}^2$

V

$$\Rightarrow E[Z^{(2)}] = \mathbf{F}_2 + \mathbf{G}_2 \quad \text{and} \quad Var[Z^{(2)}] = 2(2\langle \mathbf{f}, \mathbf{g} \rangle + \mathbf{F}_2^2 + \mathbf{G}_2^2)$$
(13)
$$Cov[X^{(2)}, Z^{(2)}] = 2\langle \mathbf{f}, \mathbf{g} \rangle (\mathbf{F}_2 + \mathbf{G}_2)$$
(14)

$$\hat{C} = -\frac{Cov[X^{(2)}, Z^{(2)}]}{Var[Z^{(2)}]} = -\frac{\langle f, g \rangle (F_2 - G_2)}{(2\langle f, g \rangle + F_2^2 + G_2^2)}$$
(15)
For arrance reduction =
$$\frac{Cov[X^{(2)}, Z^{(2)}]^2}{Var[Z^{(2)}]} = \frac{2(\langle f, g \rangle (F_2 - G_2))^2}{(2\langle f, g \rangle + F_2^2 + G_2^2)}$$
(16)

Improving Inner product estimate using CV method

□ Our CV estimate of inner product : $X^{(2)} + \hat{c}(Z^{(2)} - E[Z^{(2)}])$ Recall:

$$Z^{(2)} = \tilde{f}^2 + \tilde{g}^2$$
 and $E[Z^{(2)}] = F_2 + G_2$,

and

$$\hat{c} = -\frac{\langle f,g \rangle (F_2 - G_2)}{\left(2\langle f,g \rangle + F_2^2 + G_2^2\right)}$$

 \Box For $\langle f, g \rangle$, we use $X^{(2)}$ as a proxy.

 \Box For F_2 and G_2 , we use \tilde{f}^2 and \tilde{g}^2 obtained by Tug-of-War sketch as a proxy.

Datasets

Synthetic dataset: We generate a pair of stream using same procedure mentioned for F_2^2 estimation

KOS dataset: We split the corpus into two equal halves consisting of the same number of documents, and we consider each half as a separate data stream.

□ **Transaction datasets**: we split the streams in two equal halves and consider each half as a separate data stream

Evaluation Metrics:

□ Variance analysis via box-plot

- Mean absolute error
- Median of means estimation

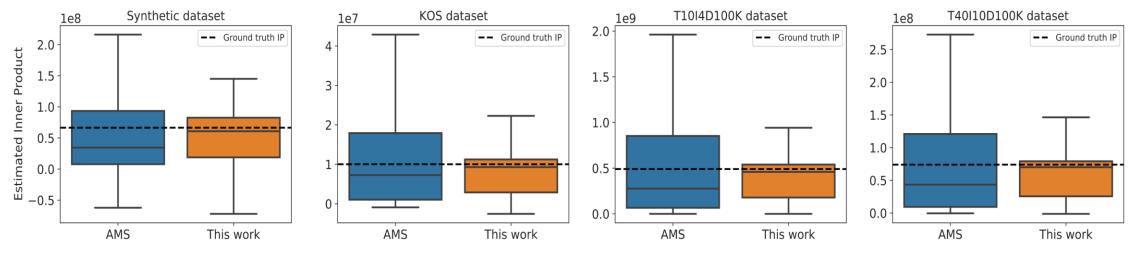
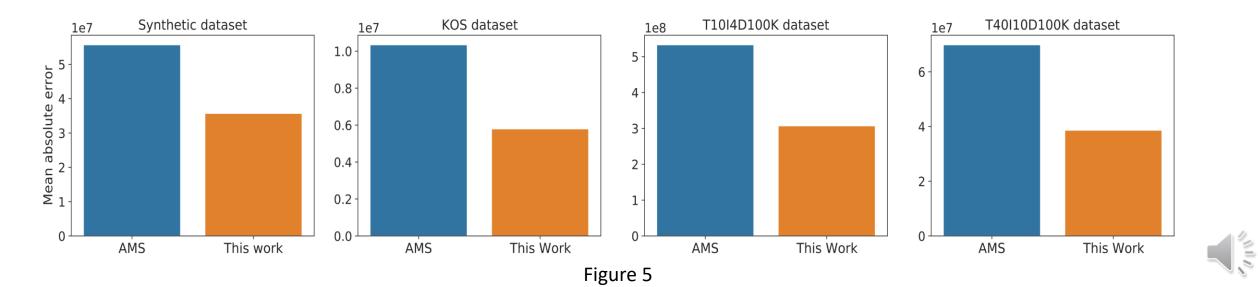


Figure 4



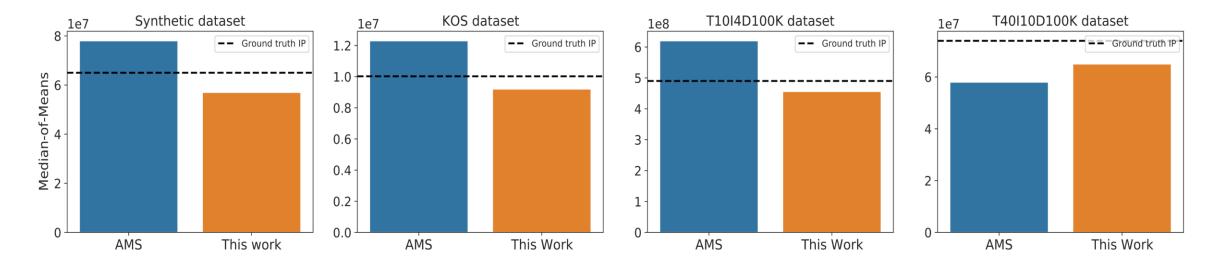


Figure 6

Conclusion and Open Questions

Summary

□ Improving Tug-of-War algorithm for F_2 and Inner product estimation using Control-Variate Method.

Less overhead and nice empirical performance.

Open Questions

Better candidate for Control-variate random variable Z?

□ Possibility of applying in other streaming/randomized algorithms?

Thank You

□ <u>bhishamdevverma@gmail.com</u>

- □ <u>rameshwar.pratap@gmail.com</u>
- kulraghav@gmail.com

- Alon, N., Matias, Y., & Szegedy, M. (1999). The space complexity of approximating the frequency moments. *Journal of Computer and system sciences*, *58*(1), 137-147.
- Lavenberg, S. S., & Welch, P. D. (1981). A perspective on the use of control variables to increase the efficiency of Monte Carlo simulations. *Management Science*, 27(3), 322-335.